


tween the same spheres floating at a liquid-liquid interface16–18.

In this paper we focus on lateral immersion forces between

particles protruding through a fluid film on top of a rigid, flat

substrate. The capillary interactions between rigid particles in

liquid films have already been studied extensively. Theoretical

descriptions have been derived for rigid spheres and cylinders for

both immersion and flotation forces10,17–19. Several experimen-

tal studies report on the interaction forces between particles, and

on the clustering and aggregation of particles due to these capil-

lary interactions20–23. Additionally, analytical and computational

techniques have been applied to study the capillary interactions

between rigid particles9,15,24–32.

Several experimental studies for soft latex or microgel particles

can be found13,33–36. Furthermore, molecular dynamics, dissipa-

tive particle dynamics, lattice Boltzmann and mean field simula-

tions were applied to investigate various properties of soft parti-

cles at fluid interfaces37–42. While molecular dynamics simula-

tions are not capable to study the influence of the particle soft-

ness and the surface wetting properties for many particles at a

fluid-fluid interface due to the prohibitive computational effort,

dissipative particle dynamics and mean field approaches over-

come this limitation by reducing the resolved details of the par-

ticle structure. However, to the best of our knowledge, the de-

tailed influence of the particle softness on the lateral forces and

on aggregation properties has not been systematically studied in

experiments or simulations.

The remainder of the paper is organised as follows. In section 2

we provide a brief summary of the relevant theory on lateral im-

mersion forces between rigid spherical particles. Section 3 then

gives a brief overview of the used numerical method and simula-

tion set up. In section 4, we benchmark our method and compare

simulations of rigid spherical particles with both theory and ex-

perimental results. Next, we characterise the deformation of the

interface and capillary charge of a single soft particle in a liquid

film on a rigid substrate, and study the influence of the softness

and wetting properties of the particle. Furthermore, the cluster-

ing of many soft particles in a liquid film is studied. Finally, we

discuss our results and present our conclusions.

2 Lateral capillary interactions

Here, following Kralchevsky and coworkers11,43, we summarize

the theory of the capillary interaction between two spheres with

radius R0 protruding through a fluid layer of height h0 above a

solid, flat substrate as depicted in the left panel of Fig. 1.

We define the height of the fluid meniscus in the horizontal

xy-plane relative to the film height at infinite distance as h0.

Sufficiently far away from the particle the meniscus is flat, and

its overall shape can be described by the Laplace equation of cap-

illarity17,44

γ∇II ·
[

∇IIζ

(1+ |∇II|2)1/2)

]

= Pc, (1)

where γ is the surface tension, ζ describes the height of the menis-

cus relative to h0 in the horizontal xy-plane, Pc is the capillary

pressure difference across the meniscus, and

∇II =~ex
∂

∂x
+~ey

∂

∂y
, (2)

is the two-dimensional gradient operator in the xy-plane. If the

particle deforms the interface only slightly, with pertubations that

are small as compared to the undisturbed film thickness h0, the

Laplace equation simplifies to a linear form11

∇2
IIζ = q2ζ , (3)

where q is the inverse capillary length, which characterises the ex-

tent of the deformation of the fluid meniscus. Converting Eq. 3 to

cylindrical coordinates (r,θ), the meniscus shape around a single

particle can be shown to take the form17,45

ζ (r) = Γsin(ψ)K0(qr), (4)

where Γ is the radius of the three-phase contact line, ψ is the

slope of the meniscus, and K0 is the modified Bessel function of

the second kind (Macdonald function46) and zeroth order,

K0(x) =

∞
∫

0

cos(xt)√
t2 +1

dt. (5)

The corresponding meniscus decays exponentially at infinity44.

The capillary interaction force between two spheres partially

immersed in a thin film can be approximated by the interaction

between two cylinders assuming that the surface tension of the

fluids acts only at the particle-fluid contact line and that the cur-

vature of the particle is small as compared to the deformation of

the fluid interface17.

Despite that the capillary force acting on two immersed bodies

results indirectly from the overlap of their menisci, the interac-

tion forces do obey Newton’s third law10,17. Hence, it suffices

to characterise the capillary interaction force on only one of the

two bodies. The original theory is derived in two alternative man-

ners: an energetical approach18 and a mechanical approach17,47,

which were shown to yield equivalent results10.

For the case of two vertical cylinders, labelled as k=1,2, the de-

formation of the interface can be characterised by their capillary

charge18

Qk = Γk sin(ψk), (6)

where Γk is the radius of circumference of the horizontal plane at

the contact-point of the fluid meniscus with particle k, and ψ is

the slope of the meniscus near the contact point of particle k. The

resulting lateral capillary interaction force reads16,18

Fcap(L) =−2πqγQ1Q2K1(qL), (7)

where L is the distance between the centre of mass of the two

particles, and K1(x) is the modified Bessel function of the second

kind and first order

K1(x) =

√
π

(− 1
2 )!

(

1

2
x

) ∞
∫

1

e−xt(t2 −1)−1/2dt. (8)
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When qL ≪ 1 this reduces to a form similar to Coulomb’s law for

the electric force18

Fcap(L) =−2πγ
Q1Q2

L
, (9)

which is why Qk is commonly referred to as the capillary charge.

Although derived initially only for contact angles close to π/2,

Velev et al16 have shown that it remains valid even for highly

wetting surfaces, and thus for large meniscus slopes in the vicinity

of the cylinders.

3 Numerical method

3.1 Method description

We simulate the suspending fluid using the lattice Boltzmann

method (LBM)48. The standard LBM can be extended towards

multiphase/multicomponent fluids49,50 and suspensions of parti-

cles of arbitrary shape and wettability15,51,52. We review some

details in the following and refer the reader to Ref. 42 for a de-

tailed description of the method and our implementation.

We solve the discretized Boltzmann transport equation on a

cubic lattice with lattice constant ∆x for the distribution functions

of each component c,

f c
i (x+ ei∆t, t +∆t)− f c

i (x, t) =
−∆t

τc

[

f c
i (x, t)− f

eq
i (x, t)

]

, (10)

where i = 1, ...,19 labels the discrete velocity vectors in three di-

mensions, f c
i (x, t) is the single-particle distribution function, ∆t

is the time step, and ei is the discrete velocity in the ith direc-

tion. Here, τc represents the relaxation time for component c.

We define the macroscopic densities and velocities for each com-

ponent as ρc(x, t) = ρ0 ∑i f c
i (x, t), where ρ0 is a reference density,

and u
c(x, t) = ∑i f c

i (x, t)ei/ρc(x, t), respectively. f
eq
i is the second-

order equilibrium distribution function, defined as

f
eq
i = ωiρ

c

[

1+
ei ·uc

c2
s

− (uc ·uc)

2c2
s

+
(ei ·uc)2

2c4
s

]

, (11)

where ωi denotes the lattice weights with values ω0 = 1/3 for the

rest component, ω1,...,6 = 1/18 for the six nearest neighbors and

ω7,...,18 = 1/36 for the nearest neighbours in diagonal direction.

The speed of sound of the model is cs =
1√
3

∆x
∆t .

The polymeric soft particles are modelled using fluid-filled elas-

tic capsules53. We use a strain-hardening two-dimensional hyper-

elastic law known as the Skalak strain energy54, which is written

as

Estrain =
κS

4

∮

(I2
1 +2I1 −2I2 +CI2

2 )dAc, C >−1/2, (12)

where
∮

is an integral over the capsule area (Ac), I1 = λ 2
1 +λ 2

2 −
2 and I2 = λ 2

1 λ 2
2 − 1 are the deformation invariants, and C is a

constant parameter related to the strain-hardening nature of the

membrane. In the small deformation limit, the 2D Poisson ratio

can be expressed as function of C such as νs = C/(1+C) with

νs ∈]− 1 . . .1]55. The area dilatation modulus κA is defined such

as κA/κS = 1+2C. To avoid membrane buckling, which can occur

as a result of compressive tensions53, we restrict ourself to quasi-

inextensible membranes with C ≈ 9. In addition to resistances

to shear elasticity and area dilatation, our particles are endowed

with bending resistance. The curvature energy is accounted for

via the Helfrich free energy

Ebending =
κB

2

∮

[2H −H0]
2dAc +κG

∮

A
KdAc, (13)

where H0, H = 1
2 ∑

2
i=1 Ci, and K = ∏

2
i=1 Ci are the spontaneous,

mean, and Gaussian curvatures. κB, and κG are the bending and

Gaussian curvature moduli. The volume conservation of the cap-

sule is enforced using a penalty function reading as

Evolume =
κV

2

[V −V0]
2

V0
, (14)

where V0 is the reference volume of the stress-free capsule, and

κV is a constant parameter. The strain and volume forces are

evaluated using the principle of virtual work while the curvature

force is obtained from the functional derivative of the Helfrich

free energy. Further details on the method can be found in56,57.

In principle, the approach presented here could be extended to

model solid elastic particles by considering a tetrahedralized vol-

ume mesh coupled with a 3D hyperelastic constitutive law as re-

cently described in58.

The equilibrium shape of the particle steams from the interplay

between the property of the interface and the elasticity of the

membrane. Thus, we introduce the dimensionless number β to

describe the softness of the particle at the fluid-fluid interface,

such that

β =
R2

0γ

κB
, (15)

where γ is the surface tension of the fluid-fluid interface, and R0

is the radius of the undeformed particle. β here is defined with

respect to κB, since the contribution of κS to the equilibrium shape

of the particle is found to be negligible in the absence of in-plane

forces.

The particle membrane and the fluid are coupled using the

half-way bounce-back algorithm with the coupling proposed by

Ladd59 as already used for the simulation of soft particle suspen-

sions in single-component fluids60–62, and a first-order accurate

time-integration scheme where each boundary node (x̂i) is ad-

vected in time such that

x̂i(t +∆t) = x̂i(t)+∆t
F

tot
i

mi
, (16)

with mi being the mass of the ith boundary node and F
tot
i =

F
bending
i +F

strain
i +F

volume
i +F

int
i the total membrane force. Here,

F
int
i = F

PP
i + F

PS
i refers to a short range Hertz repulsive force

added to avoid particle-particle and particle-substrate overlap.

The coupling of quantities between the boundary elements and

boundary nodes is done via a homogeneous scheme where the

three nodes of only the corresponding boundary element are

given the same weighting factor. The half-way bounce back

method is known to suffer from so-called staggered momenta

which can be prevented by spreading the total exchanged mo-

mentum homogeneously over two consecutive time steps59.

To include multi-component fluid interactions, we follow the

work of Shan and Chen49 and apply a mean-field force F
c to the
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two soft particles that start at Lgap = 2R0 as spherically-shaped

particles in a film with h0 = 0.4R0. Indeed, the stiffer particles

approach each other faster than the softer particles. The gap de-

creases initially as a result of the deformation of the particles and

afterwards as a result of the lateral capillary interaction force.

The approaching velocity of the particles is approximately con-

stant until the gap distance is of the order of ∆x. At such close

distances, the particle motion is dampened as a result of the hy-

drodynamic lubrication force between the particles and finally the

repulsive particle-particle interaction force. For the softest parti-

cles (β = 50), the approaching velocity shows some variations due

to the changing discretisation of the particle boundary and result-

ing fluctuations in the force on both the particle boundary and

fluid nodes.

4.5 Clustering of soft particles in a thin film

The capillary interactions between multiple particles induces, for

similarly wetting particle surfaces, an effective clustering. In this

section we study this clustering behaviour in a large system with

O(103) particles, and its dependency on the particle softness.

We initialise 1730 particles protruding through a fluid film on

top of a substrate corresponding to an effective packing fraction

of around 25% in a domain of ~D = [1200,1200,40]∆x3. The initial

height of the fluid film is set to h0 = 0.35R0 and the simulations are

run for 106 timesteps, while the particle properties are sampled

every 103 steps.

We initialise the particles at the fluid-fluid interface in a spher-

ical morphology and initialise the fluid-fluid as a flat film on top

of the substrate. However, if the soft particles are not initialised

close to their equilibrium shape corresponding to the surrounding

fluid interface, the relaxation towards the local equilibrium shape

and resulting movement of the particle boundary induces a flow

as well as a deformation and movement of the fluid-fluid inter-

face. The forces acting on the particle due to this relaxation can

be substantially stronger than the capillary interactions we are in-

terested in. This effect is however not easily avoidable, since the

equilibrium shapes of the particle and the fluid-fluid interface are

not known a priori. Therefore, the first few thousand timesteps

of the simulations are dominated by the equilibration process un-

til the action of the capillary interactions between the particles

becomes the determining factor.

In Fig. 9, we show some instantaneous snapshots of the parti-

cle centres of mass at different times. The particles are coloured

based on the results of a clustering algorithm63, where particles

are grouped into the same group when the separation δcom be-

tween their centre of mass satisfies

δcom ≤ 〈2R〉+δ0. (21)

Here, 〈2R〉 is the particle diameter in the horizontal plane aver-

aged over all particles in the system, and δ0 is the minimal in-

teraction range between two particle boundary elements. Due

to identical initial conditions, it is possible to appreciate that the

morphology of the clusters in the case of rigid particles and in

case of β = 10 are quite similar at any stage, whereas the softest

case β = 25 is clearly different.

Looking at the time evolution of the average cluster size,

Fig.10, it appears that the clusters containing rigid particles are

growing faster in the initial phase, approximately until 5×104∆t,

after which the clusters in the system with softness β = 10 start

growing faster, being eventually overcome by the softest system,

that shows the largest slope at about 5×105∆t.

Initially, we observe a single cluster of six particles, which is

a result of the random initialisation of the particles. Then, in

the first stage of the particle clustering, many smaller clusters are

rapidly formed as a result of the capillary interactions between

the particles. Here, the rigid particles cluster faster as a result of

their larger capillary charge, and the growth rate decreases for an

increasing particle softness.

In the second growth stage, roughly between 2.5×103 and 3×
105 timesteps, most particles belong to a cluster, and the average

cluster size grows with a constant exponent as can be observed in

Fig. 10. Here, the average domain size grows faster for the soft

particles as compared to the perfectly rigid particles.

The size of the largest cluster is initially the largest for the rigid

particles, as a result of the initial fast clustering rate. However,

after roughly 2× 105 steps, the largest cluster for the simulation

with particles with β=10 becomes of a comparable size, and af-

terwards increases relative to the rigid particles. The softest par-

ticles with β = 25 show a similar trend, albeit somewhat delayed

due to the lower initial rate of clustering.

Comparing the different columns of Fig. 9, one can see that

for β = 25 the typical cluster is smaller, but also that the typical

separation between the clusters is smaller. Hence, it can be ex-

pected that these clusters are sufficiently close to eventually com-

bine into larger clusters. Apparently, the initial rapid clustering of

the rigid particles results in larger separations between the differ-

ent clusters, which in the later stage require more effort to cluster

together, reducing the rate at which large clusters combine.

In the early stages the particles are rapidly pulled together by

the capillary forces, forming clusters without a uniform order. For

example, in some cases a ring with 7 particles surrounding a sin-

gle particle or particles oriented in a square packing are formed

during the clustering, and remain stable until the end of the simu-

lation. A thorough visual inspection of Fig. 9 shows the tendency

for softer particles to more easily form a hexagonal packing than

the rigid particles. For the rigid particles, however, it occurs more

regularly that particles are trapped in a non-hexagonal packing.

Fig. 11 shows the radial distribution function of the particle

centres

g(r) =
A

N

n(r)

2πrdr
, (22)

where n(r) is the number of particles within a shell of thickness

dr at a radial distance r, A is the total area of the system, and

N is the total number of particles in the system. In line with

Fig. 9 and 10, we observe that for the rigid case many particles

almost touch each other already in the early stages (i.e. peaks at

integer values occur in g(r)), whereas these develop more slowly

for softer particles. A hexagonal packing (indicated by a peak

near r =
√

3〈2R〉) is more pronounced for β = 10 than for the

rigid particles near the end of the simulations. Furthermore, for

the rigid particles most of the regions with a hexagonal packing
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